Bathtubs and Showers

Bathtubs
Bathtubs are made from many different types of materials, including enameled cast-iron, porcelain-enameled steel, and plastic. Plastic tubs are made from materials including ABS, PVC, fiberglass, fiberglass-reinforced plastic, acrylic, and cultured-marble acrylic. Bathtubs that are equipped with shower fixtures should be manufactured with slip-resistant surfaces. Bathtubs should have a drainage outlet (tailpiece) with a minimum diameter of 1-1/2 inches. Every tub should be equipped with a stopper. The bathtub should have an overflow outlet installed. The overflow prevents flooding if the tub is being filled while unattended, and prevents overflow of the water when a person enters a tub that is full.

Fire-Resistance
Bathtubs made of plastic are tested for fire ignition.  They are made with fire-resistant chemicals to reduce their fuel contribution in a house fire, or an accidental exposure to a plumber’s torch.

Large Bathtub Loads
Some bathtubs are so large that they can accommodate more than one person at a time.  These larger bathtubs may need special and additional structural support underneath them to adequately support the load.
A 3×4-foot bathtub may have a capacity to hold 200 gallons or more.  The weight of the bathtub, water, and occupants may total over 1 ton, considering:

200 pounds for the bathtub
+ 1,600 pounds of water
+    350 pounds for two people
= 2,150 pounds

A very large tub may cause structural problems because live-loading for a typical residential home is 40 pounds per square foot.  The live load for a 3×4-foot occupied tub may be assumed to be only 480 pounds, but may weigh over 2,000 pounds while it is in use.

Maintenance Tips
The homeowner should make sure that the tub is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix.

Showers
Plastic, pre-fabricated shower units are constructed of various synthetic materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, cultured marble, cast-filled fiberglass, polyester, cultured marble acrylic, and acrylic.  These shower units are impregnated with fire-retardant chemicals to reduce the fuel contribution during a fire, and protection against an accidental burn by a plumber’s torch.

The showerhead height is not typically regulated by building codes, but the head is commonly installed 70 to 80 inches above the shower floor.

Shower Water Pipes
Water-supply pipes from the shower valve to the showerhead outlet — referred to as the shower riser pipes — whether exposed or not, must be firmly attached to a structural component to prevent the pipes from leaking caused by stress fractures or joint failures.  Movement of the showerhead may move the riser piping, possibly causing failure of the piping.  The risers must be firmly secured.

The common practice for installing the riser pipe is to place a drop-ear elbow at the top of the riser pipe.  The elbow has two wing connections.  They can be screwed to a structural backing board, such as a 2×4.  A pipe strap can be used instead of a drop-ear elbow.  When the riser is exposed, the manufacturer will typically provide a strap or attachment device to match the finish of the fixture and pipe.  The strap or attachment device should be firmly secured to a structural component.

Shower Outlets
The waste outlet for a shower should have minimum diameter of 1-1/2 inches.  The shower outlet should have a strainer that is at least 3 inches in diameter, with dimensional openings in the strainer of at least a 1/4-inch.  The strainer should be removable.

Shower Area
A shower compartment should have an interior cross-sectional area of at least 900 square inches.  This will allow an average-sized adult to clean the lower body while bending over.  A shower that’s any smaller would be inadequately sized.  Shower compartments should be at least 30 inches in minimum dimension.  This measurement is based on the movement of an adult body inside a shower and measured from the finished     interior dimension of the compartment, excluding fixture valves, showerheads, soap dishes and grab bars.  There are exceptions for showers having fold-down seats, and those with compartments at least 25 inches wide and 1,300 square inches in cross-sectional area.

The exception allows for a shower with one dimension being 25 inches, provided the compartment has at least 1,300 square inches of cross-sectional area.  This is useful to contractors and DIY homeowners who remove an old bathtub and install a standup shower fixture in the same space.

Shower Walls
Showers and bathtubs with installed showerheads should be finished with a non-absorbent surface that shall extend to a height of not less than 6 feet above the floor level of the room, or 70 inches above the shower floor.  It should be constructed of smooth, corrosion-resistant and non-absorbent materials to protect the structural components from moisture damage.  The gypsum or cement wallboard behind ceramic tiles of a shower wall should be water-resistant. The water-resistant material is not required in the rest of the bathroom, although it is a common practice to use water-resistant gypsum wallboard in other areas of the bathroom because of the moisture levels.

Shower Access and Egress Opening
Many injuries in a home are related to accidents in the bathtub or shower.  The minimum opening requirements for access and egress allows an adult enough room to safely step into and exit the shower area without having to twist or turn through a narrow opening.  The shower opening (or access and egress opening) should be at least 22 inches of clear and unobstructed finish-width.  The 22-inch width is based on the approximate shoulder width of an average-sized adult, and provides comfortable access to service the valves, showerheads and drain.  It allows for emergency response and rescue access, and emergency egress.

Shower Floors
The shower floor surface must be watertight with smooth, corrosion-resistant, non-absorbent, waterproof materials.  Joints between the floor and walls of the shower must be sealed or flashed to prevent water penetration.  Ideally, there should be some type of slip-resistant floor surface.  The shower floor structure needs proper support by a smooth and structurally sound base.  The base of the shower floor should be designed to support both dead (structural) and live (people and water) loads.

Shower pans and liners are installed under and around showers to prevent moisture intrusion from getting into the structural supports under and behind the shower enclosure.  They must meet specific standards for material, installation and size in order to support both dead and live loads.

Shower Glazing
Glass doors enclosing the shower should be made of safety glazing.  If a window is installed in the shower, the window should be made of safety glazing to provide protection.  If a person slips or falls inside the shower, s/he may be seriously injured by broken glass if the glass is not made of safety glazing.  The safety glazing should be correctly labeled by being permanently marked in a corner, legible and visible after installation, and indoor applications should be marked “indoor use only.”

Maintenance Tips
Similar to other bathroom fixtures, the homeowner should make sure that the shower is free of cracks, rust and other staining, and that all edges, gaps and surrounding tile are adequately caulked to ensure that moisture cannot leach behind the tile work and drywall, which can lead to leaks and structural damage behind walls that won’t be evident until the issue becomes extensive and expensive to fix.  Additionally, if the glazing for the showers doors is damaged, it should be replaced, as cracked glazing can break without notice and cause serious injuries.

SaveSave

Bathroom Sinks (Lavatories)

Lavatories
A lavatory is a washbasin or sink located in a bathroom or washroom.  “Lavatory” means washbasin or sink, and is derived from the Latin word lavatorium, which means washing vessel, and the French word laver, meaning “to wash.” Lavatories come in a variety of shapes and sizes.  They are available in enameled cast-iron, vitreous china, stainless steel, porcelain-enameled formed steel, plastic, and non-vitreous ceramic.  They can be wall-mounted, hanger-mounted, under-mounted, pedestal, rimmed, and above-center basin types.
Countertops integrated with lavatories are constructed of a variety of materials, including ABS, PVC, gel-coated fiberglass-reinforced plastic, acrylic, polyester, and cultured marble.  Plastic vanity tops should be impregnated with fire-resistant chemicals to reduce the fuel contribution of the lavatory during a house fire or the accidental fire from a plumber’s torch.  They are also made to resist the effect of a burning cigarette left unattended on the vanity top.

Lavatories should have a waste outlet of at least 1-1/4 inches in diameter.  Each lavatory must have a strainer, a pop-up stopper, a crossbar, or other mechanism to prevent items such as rings, toothbrushes and cosmetic items from dropping into the drain.

Lavatory Overflows
Former standards required lavatories to have an overflow, but that is no longer the case.  The overflow is now an option of the manufacturer.  The reason for not requiring an overflow at a lavatory is because of the lack of use of the overflow, which can cause bacterial and micro-organism growth.

Where a lavatory does have an overflow installed, the cross-sectional area of the overflow should be a minimum of 1-1/8 inches; anything larger can promote bacterial and micro-organism growth.  The overflow should be able to prevent overflowing of the sink for a minimum of five minutes when tested from the onset of water flowing into the overflow’s opening.

Maintenance Tips
There are many different designs of lavatories, including artisanal styles that sit up on the vanity, rather than being dropped into a recessed cavity in the vanity or countertop.  Regardless of the style or whether it includes an overflow opening, the washbasin should be securely attached to the vanity, be free of cracks and other defects, and have gaps that are properly caulked to prevent moisture buildup, which can lead to unsanitary conditions, including mold growth.

SaveSave

SaveSave

Toilets and Bidets

A water closet in the U.S. is commonly referred to as a toilet.  The term “water closet” originates from the time when plumbing was brought indoors, and defecation took place in a small, closet-size room with a pot.

Toilet Styles   
There are three styles of water closets: close-coupled, one-piece, and flushometer valve.  The most common is the close-coupled water closet, which has a bowl and separate gravity-type tank or flushometer tank that is supported by the bowl.  A one-piece water closet is constructed with the gravity-type tank or flushometer tank and bowl as one integral unit.  A flushometer-valve water closet is a bowl with a flushometer valve.  Water closet bowls come in six styles: blow-out, siphon jet, reverse trap, wash-down, siphon vortex, and siphon wash.

Toilet Measurements
A water closet has a water consumption limit of a maximum average of 1.6 gallons of water per flush. The general bowl rim height above the floor is between 14 and 15 inches.  Other rim heights may be needed for water closets used by children (10 inches), and the elderly and persons with physical disabilities (18 inches).  Elongated water closet bowls are required for public or employee use but are often installed in homes.  An elongated bowl is 2 inches longer than a regular bowl.

Defects at Toilets
The water closet (toilet) may have a clogged drain.  While flushing the toilet, watch the flush performance, and use toilet paper as part of this test.  There should be no excessive odors around the water closet.  Check the flooring around the toilet with your foot.  Using the side of your leg, check to see if the toilet is securely attached to the floor.  If it wobbles, the screws at the base may be loose, or the wax ring that adheres the fixture to the waste pipe may be worn or of the wrong size.  If so, it should be replaced.  Look for dampness around the bottom of the toilet base.  Toilets sometimes run continuously.  Check for a water shut-off valve.  Some toilets are mistakenly connected to the hot water system.  Tank lids are often cracked.  Any defective parts should be immediately replaced to avoid backup flooding.

Bidets
Common in much of Europe and Asia, bidets are toilet-like plumbing fixtures designed to promote posterior hygiene. They’re becoming increasingly common in North America.  Contrary to popular belief, a bidet is not an alternative to a toilet.  Its purpose is as a hygiene device following toilet use.  However, some bidets have been incorporated into toilets, especially in bathrooms that are not large enough for both fixtures.

Bidets, like toilets, are typically made from porcelain and contain a deep recess within a wide rim. They emit an arc of clean water from a nozzle that may be located beneath the rear of the rim or deep within the fixture’s cavity. Users can sit on the rim (or seat, if it has one), or straddle the fixture and face in either direction. He or she can decide which direction to face based on the water jet configuration and the part of their body that needs cleaning. Water temperature and pressure can be adjusted with knobs in order to arrive at the desired settings.

Some bidets come with built-in air dryers. Toilet paper can be used for this purpose if no dryer is available. The bidet can be rinsed after use to keep it clean.

Benefits

  • People who suffer from hemorrhoids, irritable bowel syndrome, or have recently had surgery can find relief with the more gentle water flow of a bidet.
  • As the bidet requires less operator mobility, they are easier to use for the elderly, disabled and obese.
  • Many believe that the use of bidets is more hygienic and effective than toilet paper.

Safety Precautions

  • Users should familiarize themselves with the rate of temperature and pressure changes that occur when they adjust the controls. Sensitive regions can be burned if the user is not careful, and high water pressure can be irritating.
  • Users should know in advance the direction of the water arc and position themselves accordingly. The spray can be powerful enough to strike a person in the face.

SaveSave

Water Heaters

A water heater is an appliance that heats potable water and supplies heated water to the home’s plumbing distribution system.  Most tanks are insulated steel cylinders with an enamel coating on the inner surface. They are referred to as glass-lined tanks. The lining helps prevent corrosion.  A water heater can literally explode if it’s not installed properly. There are standards that regulate the materials, design and installation of water heaters and their related safety devices. Certification marks on them from approved agencies indicate compliance with approved standards.

Conventional residential water heaters have life expectancies that vary greatly.  The typical water heater has a lifespan of about 10 years, based on the following factors: correct installation; usage volume; construction quality; and maintenance.

Correct Installation
A water heater should generally be installed upright. Installing a water heater on its side will place structural stress on it due to inadequate support for the heater and its pipes, and may cause premature failure.  Water heaters should be installed in well-ventilated areas — not just for fire safety requirements and nitrous-oxide buildup, but also because poor ventilation can shorten its lifespan.  A water heater should also not be placed in an area susceptible to flood damage. Water can rust out the exterior and pipes, decreasing the life expectancy and efficiency of the unit.  A water heater is best placed in an easily accessible area for maintenance.  It should also be readily visible for fire and health-hazard requirements.

Usage
The life expectancy of the water heater depends a great deal on the volume of water used. Using large quantities of water means that the water heater will have to work harder to heat the water. In addition, the greater the volume of water, the greater the corrosive effect of the water will be on the tank materials, pipes, etc.

Construction Quality
As with most household systems and components, you get what you pay for in a water heater. Cheaper models will generally have a shorter lifespan, while more expensive models will generally last longer. A good indication of a water heater’s construction quality is its warranty.  Longer warranties naturally imply sound construction. According to a 2007 Consumer Report that deconstructed 18 different models of water heaters, it was determined that models with longer warranties were of superior manufacturing quality, with nine- and 12-year models typically having larger or higher-wattage heating elements, as well as thicker insulation. Models with larger heating elements have a much better resistance to mineral buildup or scum.

Pay attention to the model’s features.  For example, porcelain casing provides an additional layer of protection against rusting, and a greater level of heat insulation. Some models come with a self-cleaning feature that flushes the pipes of mineral deposit buildup, which can affect the unit’s lifespan.  Models with larger or thicker anodes are better-equipped to fight corrosion.

Maintenance and Parts Replacement
The hardness of the water is another consideration when looking at estimating the lifespan of a water heater.  In areas where there is a higher mineral content to the water, water heaters have shorter a lifespan than in other areas, as mineral buildup reduces the units’ efficiency. Even in areas where the water is softer, however, some mineral deposition is bound to occur.  A way to counteract this mineral buildup is to periodically flush the water heater system, which not only removes some of the buildup, but, in tank systems, the process heats the water in the tank. Higher-end models typically come equipped with a self-flushing feature.  In models for which manual flushing is required, it is important not to damage the water heater valve, which is usually made of plastic and is easy to break.

Although an older model may appear to be well-maintained, a question arises:  Is the maintenance worth it? Warranties often exclude labor costs, so a good rule to follow is that if the total repair cost per year is greater than 10% of the cost of buying and installing a new water heater, it is probably not worth replacing any damaged parts.

SaveSave

Dryer Vent Safety

dryerventsafety

House fires caused by dryers are far more common than are generally believed. According to the National Fire Protection Agency, fires caused by dryers in 2005 were responsible for approximately 13,775 house fires, 418 injuries, 15 deaths, and $196 million in property damage. Most of these incidents occur in residences and are the result of improper lint cleanup and maintenance. Fortunately, these fires are very easy to prevent.

Clothes dryers evaporate the water from wet clothing by blowing hot air past them while they tumble inside a spinning drum. Heat is provided by an electrical heating element or gas burner. Some heavy garment loads can contain more than a gallon of water that will become airborne water vapor and leave the dryer and home through an exhaust duct, more commonly known as the dryer vent.

A vent that exhausts damp air to the home’s exterior has a number of requirements:
• It should be connected. The connection is usually behind the dryer but may it be under it. Look carefully to make sure it’s actually connected.
• It should not be restricted. Dryer vents are often made from flexible plastic or metal duct, which may be easily kinked or crushed where they exit the dryer and enter the wall or floor. This is often a problem since dryers tend to be tucked away into small areas with little room to work. Vent hardware is available that is designed to turn 90 degrees in a limited space without restricting the flow of exhaust air. Air flow restrictions are a potential fire hazard.
• One of the reasons that restrictions pose a fire hazard is that, along with water vapor evaporated out of wet clothes, the exhaust stream carries lint – highly flammable particles of clothing made of cotton, wool and polyester. Lint can accumulate in an exhaust duct, reducing the dryer’s ability to expel heated water vapor, which then accumulates as heat energy within the machine. As the dryer overheats, a subsequent mechanical failure can trigger a spark, which can cause the lint trapped in the dryer vent to burst into flames. This condition can cause the whole house to catch fire. Fires generally originate within the dryer but spread by escaping through the ventilation duct, incinerating trapped lint, and following its path into the home’s walls.

Problems & Tips
If your dryer vent terminates in the crawlspace or attic, it can deposit moisture there, which can encourage the growth of mold, wood decay, and other structural problems. The vent may also terminate just under the attic ventilators. This is also a defective installation. Make sure your dryer vent terminates at the exterior and away from any doors and windows so that damp, exhausted air won’t re-enter the home. Also, the end of the dryer vent should have a free-moving damper installed to keep out birds and other pests that like to build nests in this warm environment. If you find a screen, this is a defective installation because a screen can block lint and other debris, causing it to accumulate and leading to a house fire. If it’s safety accessible, make sure your dryer vent is unobstructed and that the damper works properly.

Scott Price, CPI, #1532
Certified Home Inspector
Home Run Inspections
405-905-9175
homeruninspections@icloud.com
We cover all of the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

#dryerventsafety  #dryerventcleaning  #homesafety  #homemaintenance

SaveSave

SaveSave

SaveSave

Indoor Air Quality Issues

Indoor air quality is generally worse than most people believe, but there are things you can do about it.

Some Quick Facts:

  • Indoor air quality can be worse than that of outdoor air.
  • Problems can arise from moisture, insects, pets, appliances, radon, materials used in household products and furnishings, smoke, and other sources.
  • Effects range from minor annoyances to major health risks.
  • Remedies include ventilation, cleaning, moisture control, inspections, and following manufacturers’ directions when using appliances and products.
  • Many homes are built or remodeled more tightly, without regard to the factors that assure fresh and healthy indoor air circulation. Many homes today also contain furnishings, appliances and products that can affect indoor air quality.

Signs of indoor air quality problems include:

  • Unusual and noticeable odors
  • Stale or stuffy air and a noticeable lack of air movement
  • Dirty or faulty central heating or air-conditioning equipment
  • Damaged flue pipes and chimneys
  • Unvented combustion air sources for fossil-fuel appliances
  • Excessive humidity
  • Presence of molds and mildew
  • Adverse health reactions after remodeling, weatherizing, bringing in new furniture, using household and hobby products
  • Feeling noticeably healthier outside

Common Sources of Air Quality Problems:
Poor indoor air quality can arise from many sources. At least some of the following contaminants can be found in almost any home:

  • Moisture and biological pollutants, such as molds, mildew, dust mites, animal dander, and cockroaches
  • High humidity levels, inadequate ventilation, and poorly maintained humidifiers and air conditioners
  • Combustion products, including carbon monoxide from unvented fossil-fuel space heaters, unvented gas stoves and ovens, and back-drafting from furnaces and water heaters
  • Formaldehyde from durable-press draperies and other textiles, particleboard products, such as cabinets and furniture framing, and adhesives used in composite wood furniture and upholstery
  • Radon, which is a radioactive gas from the soil and rock beneath and around the home’s foundation, groundwater wells, and some building materials
  • Household products, such as paints, solvents, air fresheners, hobby supplies, dry-cleaned clothing, aerosol sprays, adhesives, and fabric additives used in carpeting and furniture, which can release volatile organic compounds (VOCs);
    asbestos, which is found in most homes more than 20 years old. Sources include deteriorating, damaged and disturbed pipe insulation, fire retardant, acoustical ceiling tiles, and floor tiles
  • Lead from lead-based paint dust, which is created when removing paint by sanding, scraping or burning
  • Particulates from dust and pollen, fireplaces, wood stoves, kerosene heaters, and unvented gas space heaters
  • Tobacco smoke, which produces particulates, combustion products and formaldehyde

Tips for Homeowners:

  • Ask about formaldehyde content before buying furniture, cabinets and draperies.
  • Promptly clean and dry water-damaged carpet, or remove it altogether.
  • Vacuum regularly, especially if you have pets, and consider using area rugs instead of wall-to-wall carpeting. Rugs are easier to remove and clean, and the floor underneath can also be easily cleaned.
  • Eliminate unwanted moisture intrusion by checking for sources (such as holes and cracks in the basement and other areas, and leaks from appliances), and by using a dehumidifier.
  • Open windows and use fans to maintain fresh air with natural and mechanical air circulation.
  • Always open the flue damper before using the fireplace. This will also prevent carbon-monoxide poisoning.
  • If your air conditioner has a water tray, empty and clean it often during the cooling season.
  • If you smoke, smoke outdoors and away from any windows and doors.
  • Use the range vent above your stove whenever you cook.
  • Use the bathroom vent whenever you use the bathroom.
  • Don’t leave vehicles or lawn care equipment running in your garage. Make sure the door leading from the home to the garage has a door sweep to help keep out vapors.

Your InterNACHI inspector can recommend more ways to help you maintain healthy indoor air quality for you and your family.

Scott Price, CPI, #1532 & Team
Licensed & Certified Home Inspectors
Home Run Inspections
405-905-9175
homeruninspections@icloud.com

www.Home-RunInspections.com 

We cover all the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

SaveSave

SaveSave

Moisture Intrusion: Part 2 of 2

How does moisture get into the house?

Homeowners should have a basic understanding of how moisture may enter a home and where problems are commonly found.

Moisture or water vapor moves into a house in the following ways:

  1.  Air infiltration:  Air movement accounts for more than 98% of all water vapor movement through a building’s cavities. Air naturally moves from high-pressure areas to lower ones by the easiest path possible, such as a hole or crack in the building envelope. Moisture transfer by air currents is very fast—in the range of several hundred cubic feet of air per minute. Replacement air will infiltrate through the building envelope unless unintended air paths are carefully and permanently sealed.
  2. Diffusion through building materials:  Most building materials slow moisture diffusion to a large degree, although they never stop it completely.
  3. Leaks from the roof, such as those caused by aging materials needing repair or replacement, storm damage, or deteriorated or unsealed areas around a chimney, skylight, or other roof penetration
  4. Plumbing leaks
  5. Flooding, which can be caused by seepage from runoff or rising groundwater. It may be seasonal or catastrophic; and
    household activities, including bathing, cooking, dishwashing, and washing clothes.
  6. Indoor plants, too, may be a significant source of high levels of indoor humidity.

Excess humidity that isn’t allowed to dissipate through adequate ventilation can build up into condensation, which can lead to moisture problems indoors.

Monitoring indoor humidity, introducing fresh air, providing adequate ventilation, and performing regular, seasonal home maintenance will help homeowners monitor the different areas of the home that may harbor unwanted moisture intrusion and all of the problems it can introduce.

Scott Price, CPI, #1532
Certified Home Inspector
Home Run Inspections
405-905-9175
homeruninspections@icloud.com
We cover all of the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

Home

SaveSave

SaveSave

Keeping French Drains Operational

frenchdraingrate

As a home inspector in Oklahoma I see these these french drain grates a lot.  I usually find them around homes that are built on a relatively flat lot, or at a point at which water needs to be taken away to avoid intrusion into a home or a feature such as a patio.  You may be surprised to hear this from a Home Inspector, but I am genuinely happy when I get to do an inspection during a heavy rain or just afterwards.  It gives me a better chance of ensuring that I catch any drainage problems the homes property may have that my client should be aware of.

Usually when I see these grates, which come in a variety of shapes and sizes, they are filled with debris.  This is their purpose, to catch debris before it enters into the drain pipe system and leads to a clog.  Best case scenario, the drain pipe takes the water to the street and to a main neighborhood drain, but this is not always the case.  Unfortunately, I often can find no evidence of where the drains lead to.

Downspouttofrenchdrain

The bottom line is; french drain systems are like any other drain. In order for them to function properly they need to be kept clear of debris.  If you have drains like these or others, pay attention next time you get some good rainfall and see if they are doing their job.  If they are not, clear away any obstructions that you can gain access to.  Should the problem persist, I recommend you gave the drains cleaned professionally by a plumber using a power-feed drain cleaner.  If you fancy yourself or someone in the family as handy with tools like this, they can be rented at your local big box store for a reasonable fee.

plumbingsnake

Like any other home maintenance project, the longer you prolong the repair of these drains, the more costly the fix is likely to be.  I’ve seen homes requiring literally thousands of dollars in foundation repair as a result of roof drainage that could have been easily upgraded for less that $50 bucks when the problem first started.

Happy Home Maintenance!

Scott Price, CPI, #1532
Certified Home Inspector
Home Run Inspections
405-905-9175
homeruninspections@icloud.com
We cover all of the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

SaveSave

Fall Yard Work Planned? Don’t forget to call 811 before you dig.

 

image

Believe you me, as a technician working for the cable and phone companies, we went through roll after roll of underground cable during the spring and the fall. On more than one occasion, in addition to cutting the customer’s own cable line, they had also damaged electrical and gas lines.

It only takes a few seconds to damage a buried pipeline, but the consequences could last
a lifetime. Digging before having underground utilities marked puts you in serious danger
of injury or even death. There’s an easy way to prevent that – just dial 811! It’s a free
call that can keep you and your neighbors safe.

There is a vast network of pipelines, telecommunication cables and electrical wires buried underground that need to be identified before beginning any digging project, to prevent injury, damage and service outages.
One phone call to 8II from wherever you are will route your call to Okie811 which will
alert owners of pipelines, telecommunication cables and power lines to mark their buried
assets within two full business days of the request.

There’s no charge to you for this service.

You may also submit a locate request ticket online by visiting www.okie 811.org
or by downloading the Okie811 mobile app.

Whether you’re planting a tree or installing a sprinkler system, always remember to call 811 at least two full business days before you plan to dig to allow all utility line locations to be marked.

Whatever the time of year, be safe –
call 811 before you dig!

 

Scott Price, CPI, #1532
Certified Home Inspector
Home Run Inspections
405-905-9175
homeruninspections@icloud.com
We cover all of the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

SaveSave

SUMMER Seasonal Maintenance Checklist

backyard_playground

  • Check kids’ playground equipment.
  • Check your wood deck or concrete patio for deterioration.
  • Check the nightlights at the top and bottom of all stairways.
  • Check the exterior siding.
  • Check all window and door locks.
  • Check your home for water leaks.
  • Check the water hoses on the clothes washer, refrigerator, icemaker and dishwasher for cracks and bubbles.
  • Check lawn watering equipment and make sure it is not spraying against masonry walls.
  • Check all exterior lighting.
  • Check guttering and downspouts.

Scott Price, CPI, #1532
Certified Home Inspector
Home Run Inspections
405-905-9175
homeruninspections@icloud.com
We cover all of the bases!

Serving the Oklahoma City metro and surrounding areas including Edmond, Guthrie, Cashion, Yukon, Moore, Norman, Chickasha, Midwest City/Del City, Bethany, El Reno, Shawnee, Harrah, and more.

Schedule Inspections Online at:
www.Home-RunInspections.com
Like us on Facebook: www.facebook.com/homeruninspections
Follow us on Twitter: www.Twitter.com/HomeRunInspect2

http://www.home-runinspections.com/

SaveSave

SaveSave